%arios Reservoir Modeling with GSLIB

Gaussian Simulation for Porosity
Modeling

Petrophysical Property Simulation

Gaussian Simulation

Sequential Gaussian Simulation

More Comments on the Steps in Sequential Simulation
SGSIM Program



%M Petrophysical Property
Modeling: Prerequisites

e Work within “homogeneous’ lithofacies/rock-type classification — may
require afirst step to model lithology
« Sequence stratigraphic framework — Z  vertical coordinate space
« Clean data: positioned correctly, manageable outliers, grid spacing is
appropriate
* Need to understand special features and “special” data:
— trends
— production data
— seismic data
o Considerationsfor areal grid size:
— practical limit to the number of cells
— need to have sufficient resolution so that the upscaling is meaningful

— thisresolution is required even when the wells are widely spaced
(ssimulation algorithmsfill in the heterogeneity)

« Work with “grid nodes’. We assign a property for the entire cell knowing that
there are “sub-cell” features



%rios Different Petrophysical
Property Simulation
Algorithms

 Matrix Approach (LU Decomposition): not used because of the size of the
problem (an N x N matrix must be solved where N could be in the millions)
lusim

« Turning Bands: simulate the variable on 1-D lines and combinein 3-D. Not
used because of artifacts and difficulty in conditioning to local datatb3d

* Fractals: not extensively used because self-similarity is only valid for a
limited range of scales and difficulty in conditioning to local data (see Tom
Hewett)

* Annealing: becoming popular — recommended for permeability (talk about
later)

o Sequential Simulation: widely used and recommended

[J main purpose is to describe Sequential Gaussian Simulation (SGSIM)
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Estimation versus S imulation

Simulation

Kriging

» Estimationislocally accurate and smooth, appropriate for visualizing trends,
inappropriate for flow simulation where extreme values are important, and does not
assess of global uncertainty

»  Simulation reproduces histogram, honors spatial variability (variogram), — appropriate
for flow simulation, allows an assessment of uncertainty with alternative realizations
possible
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% Sequential Simulation: Theory

e Recall the kriging estimator: Y (u)= i)\ﬁ Y (u,)

) S .
and the corresponding kriging system 3 AC(U,.U,) =C(u L), Vo,

» Thekriging system forces the covariance between the kriged estimate and the data

values to be correct: : n
Cov{Y (u),Y(u,)}= Z‘)\pC(ua,up) =C(u,u,) =C{Y(u),Y (u,)}

» Although the covariance between the estimates and the data is correct, the variance is
too small:
Var{Y'(u)} =C(0) -0 (u)
correct the variance without changing the covariance by adding an independent
(random) component with the correct variance:
Ys(u) =Y (u) + R(u)
where R(u}) corrects for the missing variance.
e Covariance between kriged/simulated values is not correct:
Cov{Y (u),Y (u')} # C{Y(u),Y (u")}

 Theideaof sequential simulation is to use previoudly kriged/simulated values as data—
reproduce the covariance between all of the simulated values!



%rios Why Sequential Gaussian
Simulation? (1)

Gaussian distribution is used because it is extraordinarily straightforward to
establish conditional distributions: shape of all conditional distributionsis
Gaussian (normal) and the mean and variance are given by kriging

1. Transform datato normal scoresin the beginning (before variography)
2. Simulate 3-D redlization in “normal space’
3. Conditional distributions are calculated by kriging to honor:
— global histogram: N(0O,1)
— local data
— secondary data (seismic, production data, ...)
4. Back-transform all of the values when finished

I Price of mathematical ssimplicity is the characteristic of maximum spatial
entropy, i.e.,

low and high values are disconnected. Not appropriate for permeability.



%M Why Sequential Gaussian
Simulation? (2)

Stepsin SGSIM:
1. Transform datato “normal space”
2. Establish grid network and coordinate system (Z, 4-space)
3. Decide whether to assign data to the nearest grid node or keep separate
4. Determine arandom path through all of the grid nodes
(@) search for nearby data and previously simulated grid nodes
(b) construct the conditional distribution by kriging
(c) draw simulated value from conditional distribution
5. Back transform and check results



%riog
Normal Scores Transformation

“graphical” one-to-one (rank preserving) transform
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%riog Transformation to/from
Normal Space

» Declustering weights are necessary

 Use“global” transformation table for small-area or cross-sectional models +—
there may be too few data in the area of interest

o “Tail” options:
— typicaly smulate the property at many more grid nodes than there are
data+— expect higher values than observed in the data (and lower).

— amost aways alinear interpolation to user-defined minimum and
maximum values is acceptable

— can account for skewness in the upper tail with a hyperbolic model
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%riog
Establish Data and Grid Network

e Work within “homogeneous’ lithofacies/rock-type classification — may
require afirst step to mode lithology

« Z4 Vvertica coordinate space
« Clean data: positioned correctly, manageable outliers, grid spacing is
appropriate
o Considerationsfor areal grid size:
— practical limit to the number of cells
— need to have sufficient resolution so that the upscaling is meaningful

— thisresolution is required even when the wells are widely spaced
(ssimulation algorithmsfill in the heterogeneity)

« Work with “grid nodes’. We assign a property for the entire cell knowing that
there are “sub-cell” features



s Search: Two-Part or Assign
Data to Grid Nodes

Two-Part?

» search for previously simulated nodes and then original datain two steps +— then treat
the same when constructing the conditional distribution

* honor the data at their locations even if they can not be seen in the final model
* necessary for cross-sectional or small-area models

Assign Datato Grid Nodes:

e explicitly honor data - data values will appear in final 3-D model

* improvesthe CPU speed of the algorithm: searching for previously simulated nodes and
original datais accomplished in one step



%M Multiple Grid Concept

e
P S

 Wetypicaly limit ourselves to the nearest 12-48 grid nodes
» Asthe sequential simulation proceeds (fine grid) only the close samples will be used

e Variogram reproduction can be poor, especially if the variogram range is large with
respect to the grid node spacing

e Multiple grid concept: simulate a coarse grid first and then refine one or more times

» Searching for datais more complicated:
— two-part search at coarse levels
— perhapsrelocate to nearest fine grid node first (unless a two-part is used at the finest level)

e A number of implementation considerations
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Reasons for more:

o theoreticaly better

* more accurate estimate of the conditional mean and variance

» Detter reproduction of the variogram

Reasons for less:

e« CPU timeis proportional to N3

e memory requirements proportional to N2

* negative weights are commonly encountered when data are screened
e using fewer data places less emphasis on the assumption of stationarity
S0, choose between 12 to 48 depending on:

e 2-Dversus3-D

» range of variogram relative to grid node spacing

o CPU timerestrictions

Number of Datato Consider
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o Simple Kriging (SK):

mg, = i)ti Z(u, ) + %— Z/\i Ejnglobal

e Ordinary Kriging (OK) - constrain

Type of Kriging

m:)K = i". Ij(ui)

o Other Types:
— Universal Kriging (UK) — accounts for ssmple trends
— Externa Drift — accounts for more complex trends
— Locally Varying Mean — accounts for secondary information
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N

Detailed Stepsin SGSIM

Transform datato “normal space”
Establish grid network and coordinate system (Z, ,-space)

Assign data to the nearest grid node (take the closest of multiple data assigned
to the same node)

Determine a random path through all of the grid nodes
(@) find nearby data and previously ssimulated grid nodes
(b) construct the conditional distribution by kriging
(c) draw simulated value from conditional distribution
Check results
(@) honor data?

(b) honor histogram: N(0,1) - standard normal with a mean of zero and a
variance of one?

(c) honor variogram?
(d) honor concept of geology?
Back transform



%riog
SGSIM Program (1)

Parameters for SGSIM
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START OF PARAMETERS:

./data/cluster.dat \ filewith data

120350 \ columnsfor X,Y,Z,vr,wt,sec.var.
-10 1.0e21 \ trimming limits

1 \ transform the data (O=no, 1=yes)
sgsim.trn \ file for output trans table

0 \ consider ref. dist (O=no, 1=yes)
histsmth.out \ file with ref. dist distribution
12 \ columns for vr and wt

0.0 15.0 \ zmin,zmax(tail extrapolation)

1 00 \ lower tail option, parameter

1 150 \ upper tail option, parameter

1 \ debugging level: 0,1,2,3
sgsim.dbg \ file for debugging output
sgsim.out \ file for simulation output

5 \ number of realizations to generate
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SGSIM Program (2)
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\ nX,xmn,xsiz

\ ny,ymn,ysiz

\ nz,zmn,zsiz

\ random number seed

\ min and max original datafor sim
\ number of simulated nodesto use
\ assign data to nodes (0=no, 1=yes)
\ multiple grid search (0O=no, 1=yes),num

\ maximum data per octant (O=not used)

\ maximum search radii (hmax,hmin,vert)

\ angles for search ellipsoid

\ ktype: 0=SK,1=0K,2=LVM,3=EXDR,4=COLC
\ filewith LVM, EXDR, or COLC variable

\ column for secondary variable

\ nst, nugget effect

\ it,cc,angl,ang2,ang3

\ a hmax, a_ hmin, a_vert




