%Hos Reservoir Modeling with GSLIB
Kriging

 Waeighted Linear Estimators

e Some Definitions

« Derivation of the Kriging Equations
o Some Examples

« Different Typesof Kriging

e How/WhereisKriging Used
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% ) Welghted Linear Estimators

 Thebasicideaisto estimate the attribute value (say, porosity) at alocation
where we do not know the true value

Z'(u)=Y A, Z(u,)

. where ureferstoa location, Z* (u) is an estimate at location u, there are n data
values Z(u,), i=1,...,n, and A, refer to weights.

» What factors could be considered in assigning the weights?
—closeness to the location being estimated
—redundancy between the data values
—anisotropic continuity (preferential direction)

—magnitude of continuity / variability
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Welighted Linear Estimators

« Assign al of the weight to the nearest data (polygonal-type estimate)

« Assign the weightsinversely proportional to the distance from the location
being estimated (inverse distance schemes)

1
c+d”
A= '
I 0 1
Zi=1 + w _ .
where d. is the distance between ddtal gnd the location being
estimated, ¢ isa small constant, and w is a power (usually between 1 to 3).

 How about using the variogram?  that iskriging
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% ) Some Definitions

Consider the residual data values:
Y (u)=Z(u) - m(u,), i=1,...,n
where m(u) could be constant, locally varying, or considered constant but
unknown.
Variogram is defined as:
2y(h) =E{[ Y(u}) - Y(u +h]?}
Covariance is defined as:
C(h) = E{ Y(u) Y (u + h)}
Link between the Variogram and Covariance:
2y(h) =[E{ Y2(u) +[E{ Y2(u+h)}]-2[E{ Y(u)*Y(u+h)]
=Va{Y(u} +Va{Y(u+h)} -2+C(h})
=2[ C(0) - C(h)]
So, C(h) = C(0) - y(h)
C(0) = sill
—y(h)

o
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Simple Kriging (1)

Y W=3A ()

« whereY (u,) aretheresidual data (data values minusthe mean) and Y*(u) is
the estimate (add the mean back in)

e Theerror varianceis defined as

E{[Y"(u) - Y(u)*

Az-2ab+b?

E{[Y (u)I'}

-2

E{Y" (u) ¥ (u)}

+ E{[Y (u)I'}

> > AMEY (W)Y ()

—zmi/\i E{Y (u) Y (u,)}

+C(0)

ii}\i)\jC(ui U )|~ ZDiAiC(u,u

)| +C(0)
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e Optimal weights A,,;=1,...,n may be determined by taking partial derivatives of
the error variance w.r.t. the weights

Simple Kriging (2)

0| ]—2|§)\C(U,,U) 2[C(u,u), i=1..,n

e and setting them to Zero
JZ)\J.C(ui,uj)=C(u,ui), 1=1,...,n

 Thissystem of n equationswith n unknown weightsis the ssimple kriging
(SK) system



Kt

Simple Kriging: Some Detalls

« There are three equations to determine the three weights:
A, [C(1,1) + A, [T(1,2) + A, [T(1,3) = C(0,1)
A, [T(21) +A, [T(2,2) + A, [T(2,3) =C(0,2)
A, [C(31) + A, [T(3,2) + A, [T(3,3) =C(0,3)

* Inmatrix notation: (Recall that C(h}) = C(0) - y( h))

(L) C(12) CELImA,O OO
£(21) c22) c@3gh.=F02)7
H(GB1 C(3B2) CEIHNH H(03)E
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Simple Kriging
Changing the Range

Arange=1range=5

range = 10

Y

>
Distance

Simple kriging with a zero nugget effect and an isotropic spherical variogram with
three different ranges:

A 1 )\ 2 }\ 3
range = 10 0.781 0.012 0.065
5 0.648 -0.027 0.001
1 0.000 0.000 0.000
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Simple Kriging

Changing the Nugget Effect

Simple kriging with an isotropic spherical variogram with arange of 10

A 100%

=

nugget = 25%

distance units and three different nugget effects:

Distance

AL Ao AL

nugget = 0% 0.781 0.012 0.065
25% 0.468 0.203 0.064

75% 0.172 0.130 0.053

100% 0.000 0.000 0.000

>
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 All versionsof kriging are elaborangs on thé basic linear regression
algorithm and corresponding esti mator

[Zs (u) —m(u)] = %;\ (UW[Z(u,)—m(u,)]

* whereZ(u) isthe RV model at |@€ation u, theu, 's arethe n datalocations,
m(u) = E{Z(u) is the location-dependent expected value of RV Z(u), and
Zo*(u) isthe linear regression estimator, also called the “simple kriging”
(SK) estimator.

e The SK weights A, (u) are given by the general non-stationary normal
equations:

r]/\ WC(u,,u)=C(u,u), a=1,...,n
SomeRema%: 5 (U)C(u,,u,)=C(u,u,)

— there are many types of kriging where specific constraints or methods of
application are considered

— theweights A, (u) account for (1) the proximity of the datato the location
being estimated and (2) the clustering of the data

— traditionally used for mapping

— modern use isin the construction of local distributions of uncertainty for
stochastic simulation algorithms
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Minimum error variance estimate of the unknown:
Z(u)=3 A (WZ(u,) + %— > A, (U)
Simple kriginfig (SK): no constraint, themean m is known.

Ordinary kriging (OK): the sum of the weights > " _; A, (u) constrained to
equal 1.

Kriging with atrend model (KT) considersthat m isunknown and that it has
amore complex trend of known shape but unknown parameters.

m( = ¥ af, ()

where m(u) isthe local mean, a,, | = 0...,L are unknown coefficients of the
trend model, and f,(u) are low order monomials of the coordinates. GSLIB
allows nine different monomials up to quadratic functions of the coordinates
(X,VY, z, XX, VY, ZZ Xy, Xz,and, yz).

Kriging with an external drift isan extension of KT. Considers asingle trend
function f,(u) defined at each location from some external (secondary)
variable.

Cokriging is for kriging with different types of data.

Indicator Kriging has a different goal — to build a conditional cdf rather than
derive an estimate.
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Parameter File For KT2D

Parameters for KB2D

khkkkhkkkkkhkhkkkkhkkkkhkk*k

START OF PARAMETERS:

./data/cluster.dat \ file with data

1 2 3 \ columnsfor X, Y, and variable
-1.0e21 1.0e21 \ trimming limits

3 \ debugging level: 0,1,2,3
kb2d.dbg \ file for debugging output
kb2d.out \ file for kriged output

5 5.0 10.0 \ Nx,xmn,Xsiz

5 5.0 10.0 \ ny,ymn,ysiz

1 1 \ x and y block discretization
4 8 \ min and max datafor kriging
20.0 \ maximum search radius

1 2.302 \ 0=SK, 1=0K, (meanif SK)
1 20 \ nst, nugget effect

1 8.0 0.0 10.0 10.0 \'it, c, azm, a_max, a min
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Parameter File For KT3D

Parametersfor KT3D

kkkkhkkhkkkhkhkkkhkhkkkkhkk*k

START OF PARAMETERS:

../data/cluster.dat \ file with data

120 3 4 \ columnsfor X, Y, Z, var, sec var
-1.0e21 1.0e21 \ trimming limits

1 \ option: O=grid, 1=cross, 2=jackknife
xvk.dat \ file with jackknife data

120 3 0 \ columnsfor X,Y,Z,vr and sec var
3 \ debugging level: 0,1,2,3
kt3d.dbg \ file for debugging output
kt3d.out \ file for kriged output

50 05 1.0 \ nNx,Xxmn,xsiz

50 05 1.0 \ ny,ymn,ysiz
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1 05 10 \ nz,zmn,zsiz

1 1 1 \x,y and z block discretization

4 8 \ min, max datafor kriging

0 \ max per octant (0O-> not used)
20.0 20.0 20.0 \ maximum search radii

0.0 0.0 0.0 \ angles for search ellipsoid

0 2302 \ 0=SK,1=0K,2=non-st SK,3=exdrift
000000000 \ drift: X,y,z,XX,yy,zz,Xy,Xz,zy

0 \ O, variable; 1, estimate trend
extdrift.dat \ gridded file with drift/mean

4 \ column number in gridded file
1 02 \ nst, nugget effect

1 08 0.0 0.0 0.0 \it,cc,angl,ang2,ang3
10.0 10.0 10.0 \a hmax, a hmin, a vert



s Kriging

e Kriging isaprocedure for constructing a minimum error variance linear
estimate at alocation where the true value is unknown

e The main controls on the kriging weights are:
— closeness of the data to the location being estimated
— redundancy between the data
— the variogram

o Simple Kriging (SK) does not constrain the weights and works with the
residual from the mean

e Ordinary Kriging (OK) constrains the sum of the weightsto be 1.0, therefore,
the mean does not need to be known

* There are many different types of kriging

« Two implicit assumptions are stationarity (work around with different types of
kriging) and ergodicity (more slippery)

« Kriging is not used directly for mapping the spatial distribution of an attribute

(sometimes when the attribute is smooth). It is used, however, for building
conditional distributions for stochastic simulation



