

Reservoir Modeling with GSLIB

- Weighted Linear Estimators
- Some Definitions
- Derivation of the Kriging Equations
- Some Examples
- Different Types of Kriging
- How / Where is Kriging Used

Weighted Linear Estimators

• The basic idea is to estimate the attribute value (say, porosity) at a location where we do not know the true value

 $\mathbf{Z}^*(\mathbf{u}) = \sum_{i=1}^n \lambda_i \cdot \mathbf{Z}(\mathbf{u}_i)$

• where **u** refers to a location, $Z^*(\mathbf{u})$ is an estimate at location **u**, there are *n* data values $Z(\mathbf{u}_i)$, i=1,...,n, and λ_i refer to weights.

- What factors could be considered in assigning the weights?
 - -closeness to the location being estimated
 - -redundancy between the data values
 - -anisotropic continuity (preferential direction)
 - -magnitude of continuity / variability

Weighted Linear Estimators

- Assign all of the weight to the nearest data (polygonal-type estimate)
- Assign the weights inversely proportional to the distance from the location being estimated (inverse distance schemes)

$$\lambda_{i} = \frac{\frac{1}{c+d_{i}^{w}}}{\sum_{i=1}^{n} \frac{1}{c+d^{w}}}$$

where d_i is the distance between data i and the location being estimated, c is a small constant, and ω is a power (usually between 1 to 3).

• How about using the variogram? \mapsto that is kriging

Some Definitions

• Consider the residual data values:

 $Y(\mathbf{u}_{i}) = Z(\mathbf{u}_{i}) - m(\mathbf{u}_{i}), i = 1,...,n$

- where m(**u**) could be constant, locally varying, or considered constant but unknown.
- Variogram is defined as:

 $2 \gamma(\mathbf{h}) = \mathbf{E}\{[\mathbf{Y}(\mathbf{u}\}) - \mathbf{Y}(\mathbf{u} + \mathbf{h}]^2\}$

• Covariance is defined as:

 $\mathbf{C}(\mathbf{h}) = \mathbf{E}\{ \mathbf{Y}(\mathbf{u}) \bullet \mathbf{Y}(\mathbf{u} + \mathbf{h}) \}$

• Link between the Variogram and Covariance: $2 \gamma(\mathbf{h}) = [E\{Y^{2}(\mathbf{u}) + [E\{Y^{2}(\mathbf{u} + \mathbf{h})\}] - 2 \cdot [E\{Y(\mathbf{u}) \cdot Y(\mathbf{u} + \mathbf{h})]$ $= Var\{Y(\mathbf{u})\} + Var\{Y(\mathbf{u} + \mathbf{h})\} - 2 \cdot C(\mathbf{h}\})$ $= 2 [C(0) - C(\mathbf{h})]$

So, $\mathbf{C}(\mathbf{h}) = \mathbf{C}(0) - \gamma(\mathbf{h})$

Simple Kriging (1)

• Consider a linear estimator:

$$\mathbf{Y}^*(\mathbf{u}) = \sum_{i=1}^n \lambda_i \cdot \mathbf{Y}(\mathbf{u}_i)$$

- where $Y(\mathbf{u}_i)$ are the residual data (data values minus the mean) and $Y^*(\mathbf{u})$ is the estimate (add the mean back in)
- The error variance is defined as

$$Y^{*}(u) - Y(u)]^{2}$$

$$A^2-2ab+b^2$$

 $E\{[Y^{*}(u)]^{2}\} - 2 \cdot E\{Y^{*}(u) \cdot Y(u)\} + E\{[Y(u)]^{2}\}$

E{[

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j E\{Y(u_i) \cdot Y(u_j)\} - 2 \cdot \sum_{i=1}^{n} \lambda_i E\{Y(u) \cdot Y(u_i)\} + C(0)$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j C(u_i, u_j) - 2 \cdot \sum_{i=1}^{n} \lambda_i C(u, u_i) + C(0)$$

Simple Kriging (2)

• Optimal weights $\lambda_{i,i}=1,...,n$ may be determined by taking partial derivatives of the error variance w.r.t. the weights

$$\frac{\partial []}{\partial \lambda_{i}} = 2 \cdot \sum_{j=1}^{n} \lambda_{j} C(u_{i}, u_{j}) - 2 \cdot C(u, u_{i}), \quad i = 1, ..., n$$

• and setting them to zero

$$\sum_{j=1}^{n} \lambda_{j} C(u_{i}, u_{j}) = C(u, u_{i}), \quad i = 1,...,n$$

• This system of *n* equations with n unknown weights is the simple kriging (SK) system

Simple Kriging: Some Details

• There are three equations to determine the three weights:

 $\lambda_{1} \cdot C(1,1) + \lambda_{2} \cdot C(1,2) + \lambda_{3} \cdot C(1,3) = C(0,1)$ $\lambda_{1} \cdot C(2,1) + \lambda_{2} \cdot C(2,2) + \lambda_{3} \cdot C(2,3) = C(0,2)$ $\lambda_{1} \cdot C(3,1) + \lambda_{2} \cdot C(3,2) + \lambda_{3} \cdot C(3,3) = C(0,3)$

• In matrix notation: (Recall that $C(\mathbf{h}) = C(0) - \gamma(\mathbf{h})$)

 $\begin{bmatrix} C(1,1) & C(1,2) & C(1,3) \\ C(2,1) & C(2,2) & C(2,3) \\ C(3,1) & C(3,2) & C(3,3) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} C(0,1) \\ C(0,2) \\ C(0,3) \end{bmatrix}$

Changing the Range

Simple kriging with a zero nugget effect and an isotropic spherical variogram with three different ranges:

	λ 1	λ 2	λ з
range = 10	0.781	0.012	0.065
5	0.648	-0.027	0.001
1	0.000	0.000	0.000

Simple Kriging

Changing the Nugget Effect

Simple kriging with an isotropic spherical variogram with a range of 10 distance units and three different nugget effects:

	λ 1	λ 2	λ 3
nugget = 0%	0.781	0.012	0.065
25%	0.468	0.203	0.064
75%	0.172	0.130	0.053
100%	0.000	0.000	0.000

Simple Kriging

Changing the Anisotropy

Simple kriging with a spherical variogram with a nugget of 25%, a principal range of 10 distance units and different "minor" ranges:

	λ 1	λ_2	λ 3
anisotropy 1:1	0.468	0.203	0.064
2:1	0.395	0.087	0.141
5:1	0.152	-0.055	0.232
20:1	0.000	0.000	0.239

Kriging

All versions of kriging are elaborations on the basic linear regression algorithm and corresponding estimator:

$$[\mathbf{Z}_{SK}^{*}(\mathbf{u}) - \mathbf{m}(\mathbf{u})] = \sum_{\alpha}^{n} \lambda_{\alpha}(\mathbf{u}) [\mathbf{Z}(\mathbf{u}_{\alpha}) - \mathbf{m}(\mathbf{u}_{\alpha})]$$

- where $Z(\mathbf{u})$ is the RV model at location \mathbf{u} , the \mathbf{u}_{α} 's are the *n* data locations, m(\mathbf{u}) = E{Z(\mathbf{u}) is the location-dependent expected value of RV Z(\mathbf{u}), and $Z_{SK}^{*}(\mathbf{u})$ is the linear regression estimator, also called the "simple kriging" (SK) estimator.
- The SK weights λ_{α} (**u**) are given by the general non-stationary normal equations:

$$\sum_{k=1}^{n} \lambda_{\beta}(u) C(u_{\beta}, u_{\alpha}) = C(u, u_{\alpha}), \quad \alpha = 1, \dots, n$$

- Some Remarks:
 - there are many types of kriging where specific constraints or methods of application are considered
 - the weights $\lambda_{\alpha}(\mathbf{u})$ account for (1) the proximity of the data to the location being estimated and (2) the clustering of the data
 - traditionally used for mapping
 - modern use is in the construction of local distributions of uncertainty for stochastic simulation algorithms

Kriging

• Minimum error variance estimate of the unknown:

$$\mathbf{z}^{*}(\mathbf{u}) = \sum_{n=1}^{n} \lambda_{\alpha}(\mathbf{u}) \mathbf{Z}(\mathbf{u}_{\alpha}) + \left[1 - \sum_{n=1}^{n} \lambda_{\alpha}(\mathbf{u}) \right] \mathbf{m}$$

- Simple kriging (SK): no constraint, the mean m is known.
- Ordinary kriging (OK): the sum of the weights $\sum_{\alpha=1}^{n} \lambda_{\alpha}$ (**u**) constrained to equal 1.
- Kriging with a trend model (KT) considers that m is unknown and that it has a more complex trend of known shape but unknown parameters.

$$\mathbf{m}(\mathbf{u}) = \sum_{l=0}^{L} \mathbf{a}_{l} \mathbf{f}_{l}(\mathbf{u})$$

• where $m(\mathbf{u})$ is the local mean, a_1 , l = 0...,L are unknown coefficients of the trend model, and $f_l(\mathbf{u})$ are low order monomials of the coordinates. GSLIB allows nine different monomials up to quadratic functions of the coordinates

(x, y, z, xx, yy, zz, xy, xz, and, yz).

- Kriging with an external drift is an extension of KT. Considers a single trend function $f_1(\mathbf{u})$ defined at each location from some external (secondary) variable.
- Cokriging is for kriging with different types of data.
- Indicator Kriging has a different goal → to build a conditional cdf rather than derive an estimate.

Geostatistical Software LIBrary Available at www.CI.SIB.com Parameter File For KT2D Parameters for KB2D

START OF PARAMETERS:

../data/cluster.dat 1 2 3 -1.0e21 1.0e21 3 kb2d.dbg kb2d.out 5 5.0 10.0 5 5.0 10.0 1 4 8 20.0 1 2.302 1 2.0 1 8.0 0.0 10.0 10.0 \ file with data columns for X, Y, and variable trimming limits debugging level: 0,1,2,3 \ file for debugging output file for kriged output nx,xmn,xsiz ny,ymn,ysiz x and y block discretization min and max data for kriging maximum search radius 0=SK, 1=OK, (mean if SK) nst, nugget effect \it, c, azm, a max, a min

Geostatistical Software LIBrary Available at www.GLSIB.com Parameter File For KT3D Parameters for KT3D

START OF PARAMETERS:

/data/cluster.dat	\ file with data
1 2 0 3 4	\land columns for X, Y, Z, var, sec var
-1.0e21 1.0e21	\ trimming limits
1	\ option: 0=grid, 1=cross, 2=jackknife
xvk.dat	\ file with jackknife data
1 2 0 3 0	\ columns for X,Y,Z,vr and sec var
3	\ debugging level: 0,1,2,3
kt3d.dbg	\ file for debugging output
kt3d.out	\ file for kriged output
50 0.5 1.0	\nx,xmn,xsiz
50 0.5 1.0	\ny,ymn,ysiz

Solution Solut

1 0.5 1.0	\nz,zmn,zsiz
1 1 1	\x,y and z block discretization
4 8	\ min, max data for kriging
0	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
20.0 20.0 20.0	\ maximum search radii
0.0 0.0 0.0	\ angles for search ellipsoid
0 2.302	\0=SK,1=OK,2=non-st SK,3=exdrift
000000000	\ drift: x,y,z,xx,yy,zz,xy,xz,zy
0	\setminus 0, variable; 1, estimate trend
extdrift.dat	\ gridded file with drift/mean
4	\ column number in gridded file
1 0.2	\nst, nugget effect
1 0.8 0.0 0.0 0.0	\it,cc,ang1,ang2,ang3
10.0 10.0 10.0	\ a_hmax, a_hmin, a_vert

Kriging

- Kriging is a procedure for constructing a minimum error variance linear estimate at a location where the true value is unknown
- The main controls on the kriging weights are:
 - closeness of the data to the location being estimated
 - redundancy between the data
 - the variogram
- Simple Kriging (SK) does not constrain the weights and works with the residual from the mean
- Ordinary Kriging (OK) constrains the sum of the weights to be 1.0, therefore, the mean does not need to be known
- There are many different types of kriging
- Two implicit assumptions are stationarity (work around with different types of kriging) and ergodicity (more slippery)
- Kriging is not used directly for mapping the spatial distribution of an attribute (sometimes when the attribute is smooth). It is used, however, for building conditional distributions for stochastic simulation